Tuesday, May 22, 2018
Chemical Info & Community




Colors of a single chemical (Nile red) in different solvents, under visible and UV light. Chemical substances (also called pure substances) may well be defined as "any material with a definite chemical composition" in an introductory general chemistry textbook. According to this definition a chemical substance can either be a pure chemical element or a pure chemical compound. But, there are exceptions to this definition; a pure substance can also be defined as a form of matter that has both definite composition and distinct properties. The chemical substance index published by CAS also includes several alloys of uncertain composition.[4] Non-stoichiometric compounds are a special case (in inorganic chemistry) that violates the law of constant composition, and for them, it is sometimes difficult to draw the line between a mixture and a compound, as in the case of palladium hydride. Broader definitions of chemicals or chemical substances can be found, for example: "the term 'chemical substance' means any organic or inorganic substance of a particular molecular identity, including â?? (i) any combination of such substances occurring in whole or in part as a result of a chemical reaction or occurring in nature"
In geology, substances of uniform composition are called minerals, while physical mixtures (aggregates) of several minerals (different substances) are defined as rocks. Many minerals, however, mutually dissolve into solid solutions, such that a single rock is a uniform substance despite being a 'mixture'. Feldspars are a common example: anorthoclase is an alkali aluminium silicate, where the alkali metal is interchangeably either sodium or potassium.


The concept of a "chemical substance" became firmly established in the late eighteenth century after work by the chemist Joseph Proust on the composition of some pure chemical compounds such as basic copper carbonate. He deduced that, "All samples of a compound have the same composition; that is, all samples have the same proportions, by mass, of the elements present in the compound." This is now known as the law of constant composition. Later with the advancement of methods for chemical synthesis particularly in the realm of organic chemistry; the discovery of many more chemical elements and new techniques in the realm of analytical chemistry used for isolation and purification of elements and compounds from chemicals that led to the establishment of modern chemistry, the concept was defined as is found in most chemistry textbooks. However, there are some controversies regarding this definition mainly because the large number of chemical substances reported in chemistry literature need to be indexed.
Isomerism caused much consternation to early researchers, since isomers have exact the same composition, but differ in configuration (arrangement) of the atoms. For example, there was much speculation for the chemical identity of benzene, until the correct structure was described by Friedrich August Kekule. Likewise, the idea of stereoisomerism - that atoms have rigid three-dimensional structure and can thus form isomers that differ only in their three-dimensional arrangement - was another crucial step in understanding the concept of distinct chemical substances. For example, tartaric acid has three distinct isomers, a pair of diastereomers with one diastereomer forming two enantiomers.

Chemical elements


An element is a chemical substance that is made up of a particular kind of atoms and hence cannot be broken down or transformed by a chemical reaction into a different element, though it can be transmutated into another element through a nuclear reaction. This is so, because all of the atoms in a sample of an element have the same number of protons, though they may be different isotopes, with differing numbers of neutrons.
As of 2012, there are 118 known elements, about 80 of which are stable â?? that is, they do not change by radioactive decay into other elements. Some elements can occur as more than a single chemical substance (allotropes). For instance, oxygen exists as both diatomic oxygen (O2) and ozone (O3). The majority of elements are classified as metals. These are elements with a characteristic lustre such as iron, copper, and gold. Metals typically conduct electricity and heat well, and they are malleable and ductile. Around a dozen elements, such as carbon, nitrogen, and oxygen, are classified as non-metals. Non-metals lack the metallic properties described above, they also have a high electronegativity and a tendency to form negative ions. Certain elements such as silicon sometimes resemble metals and sometimes resemble non-metals, and are known as metalloids.

Home | About Us | Contact Us | Register | Advertising
Penyangkalan | Kebijakan Privasi | Syarat dan Ketentuan | Hak Cipta © 2013-2015 PT. Global Infotech Solusindo